

Balanced Mix Design A National Perspective

Dave Johnson, P.E. Senior Regional Engineer Rocky Mountain Region Billings Montana

Balance the Mix Design

asphalt institute

Strength/ Stability

Rut Resistance

Shoving

Flushing Resistant Smooth Quiet Ride Skid Resistance

Durability

Crack Resistance

Raveling

Permeability

DON'T ATTACK ONE HALF AT THE EXPENSE OF THE OTHER HALF!!

- Superpave called for Level 1, 2, and 3 testing based on traffic load
- Level 1 (Volumetrics + TSR) was only for up to around 1 million ESALS
- Level 2 and 3 were to be used for higher traffic loads and included rutting and cracking performance test
- Since we saw such good performance (with materials in 1993-2000), Levels 2 and 3 were soon forgotten

Balanced Mix Design Basic Concept

- Rutting?
 - ° NO
 - Generally not a widespread distress since Superpave implementation
- Cracking?
 - YES
 - Various cracking distresses have increased nationally
- Durability?
 - YES
 - Related to cracking, durability concerns have been noted

• Ensure pavement performance

- Rutting
- Cracking
- Durability
- Enable innovation
 - Materials
 - Specifications
- Optimize economics

asphalt institute

• AASHTO PP 105

- Four approaches
- Condition specimens
- Test for differing distress types

- Consider
 - Aging
 - Traffic
 - Climate
 - Layer

BMD Approach A

Volumetric Design with Performance Verification

Figure 1. Graphical Illustration of the Volumetric Design with Performance Verification Approach (Approach A)

- Most traditional approach
- Starts with a volumetric design
- Adds performance testing
 - Rutting
 - Cracking
 - Moisture damage
- Adjust design (gradation, AC content, additives, etc.) though the process as needed
- Establish JMF
- Least innovative

https://www.asphaltpavement.org/expertise/engineering/resources/bmd-resource-guide/implementation-efforts

BMD Approach B

Volumetric Design with Performance Optimization

Figure 2. Graphical Illustration of the Volumetric Design with Performance Optimization Approach (Approach B)

- Starts with a volumetric design
- Add performance testing
 - Rutting
 - Cracking
- Adjust mix to meet volumetric and rutting and cracking requirements
- Conduct moisture damage testing
- Establish JMF
- More innovative than Approach A

BMD Approach C

Performance-Modified Volumetric Design

Modified Volumetric Design Approach (Approach C)

- Less reliant on traditional volumetrics
- Use performance testing to establish initial binder content
 - Rutting
 - Cracking
- Adjust components if needed
- Conduct moisture damage testing
- Add anti-strip if needed
- Verify agency volumetric compliance
- Establish JMF
- More innovative than Approach B

BMD Approach D

- Most innovative approach
- No volumetric requirements
- Performance testing for mix optimization
- Select initial combination of materials
- Conduct performance testing at multiple AC contents
- Select binder content
- Conduct moisture damage testing
- Establish JMF

Figure 4. Graphical Illustration of the Performance Design Approach (Approach D)

Performance Asphalt Design Approach in USA (2017)

NCAT's Final Report to the National Cooperative Highway Research Program (NCHRP); Project NCHRP 20-07/Task 406; August 30, 2018

Performance Asphalt Design Approach in USA (August 2021)

https://www.asphaltpavement.org/expertise/engineering/resources/bmd-resource-guide/implementation-efforts

Performance Asphalt Design Approach in USA (January 2022)

asphalt institute

Rutting Performance Testing Options

- Hamburg Wheel Tracking Test
 - Most common choice
 - Used in seventeen states
 - Generally gaining popularity (BMD and non-BMD states)
- Asphalt Pavement Analyzer
 - Used by eight states
 - $^{\circ}$ Used by FAA
 - Generally loosing popularity (BMD and non-BMD states)
- Hot Indirect Tension Test
 - $^{\rm o}$ Used in Alabama only for BMD

Cracking Performance Testing Options

RUTTING TEST

asphalt institute

FILTER BY:

BMD APPROACH

CRACKING TEST

.....

Cracking Performance Testing Options

- Eight test procedures currently reported
- Two tests most common
 - I-FIT test
 - IDEAL-CT
- Seven states report two cracking tests are required

- Interest in BMD approaches growing significantly
- Multiple combinations of design approaches and testing requirements being seen
- Likely tends that BMD will instigate (Dave's opinions)
 - Increases in binder contents
 - Mitigates cracking and durability concerns
 - Less reliance on volumetrics
 - Greater reliance on laboratory performance testing during design
 - Innovations
 - Rejuvenators
 - Alternative materials

Thank You Asphalt Institute Membership

Questions?

